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COVERING MULTIGRAPHS BY SIMPLE CIRCUITS™

N. ALONT: anp M. TARSIT

Abstract. Answering a question raised i [SIAM J. Comput, 10 (19811, pp. 746-750], we show that
every bridgeless multigraph with v vertices and e edges can be covered by simple circuits whose total length
is at most min (§e, e++v —2). Our proof supplies an efficient algorithm for finding such a cover.
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1. The main results. Let G={(V, E} be an undirected bridgeless multigraph (i.c.
a multigraph with no isthmus) and put v =|V|, e =|E|. A family C,, - - -, C,, of simple
circuits (=cycles) in G is a cover of G if every edge of G is in at least one of the
circuits (2-cycles are allowed if they contain different edges of G). The size of such a
cover is the sum of the lengths of the circuits C,, -+ -, C,.. We are interested in the
problem of finding covers of minimum size,

Itai, Lipton, Papadimitriou and Rodeh considered this problem in [ILPR]. Their
main result is that every bridgeless multigraph G with v =2 vertices and e = 4 edges
has a cover of size at most

min (3e—6,e+6v—7),

and that such a cover can be found in O(e + v?) time. (Note that since G is a multigraph,
it is possible that e » ¢*.) This improves a result of Itai and Rodeh in [IR].
The authors of [ILPR] ask if the multiplicative constants in their bound can be
improved. In § 5 we settle this question in the affirmative by proving the following.
THEOREM 5.1. Every bridgeless multigraph G with v vertices and e edges has a cover
of size at most

min (fe, e+iv—1).

Such a cover can be found in polvnomial time.
For planar multigraphs we have a better (and, in a sense, best possible) result:
THEOREM 4.2. Every bridgeless planar multigraph with v vertices and e edges has

a cover of size at most
min (3e, e+3iv—3).

For a bridgeless multigraph G, let s(G) denote the minimum size of a cover of
G. One can easily show that if G is cubic then 5{G) = ie. Therefore, Theorem 4.2 gives
the best possible upper bound for every cubic planar multigraph. In fact, s(G)=3e
for every cubic planar muitigraph G.

One can also show (see [ILPR]) that if P is the Petersen graph (with 15 edges),
4hen s(G)=21. This implies that if G is a graph obtained by substituting a path of
length & for every edge of P, then s{G)/e(G)=7/5, where e(G)= 15k is the number
of edges of G. Therefore, the coefficient § in Theorem 5.1 cannot be replaced by any
constant smaller than <.

* Received by the editors April 5, 1983, and in final form January 16, 1984

* School of Mathematical Sciences, Tel Aviv University, Ramat Aviv, Israel

T Present address: Department ol Mathematics, Massachusetts Insutute of Technology, Cambndge.
Muassachuserts 02139

348



RN, DS S i

346 N. ALON AND M. TARSI

In order to prove our results we use some known results about nowhere-zero flows
in multigraphs. In the next section we state these results. In § 3 we develop a general
method of constructing covers of small size from covers by Eulerian subgraphs. In § 4
we combine this method with the fact that every bridgeless multigraph has a nowhere-
zero 8-flow and obtain a slightly weaker version of Theorem 5.1. We also prove Theorem
4.2 in this section. In § 5 we finally use nowhere-zero 6-flow to prove Theorem 5.1.

During the completion of this manuscript we were notified that our main result
(Theorem 5.1) was recently proved independently by Bermond, Jackson and Jaeger
[BIJ], with a different method.

2. Nowhere-zero flows. If G=(V, E) is a directed multigraph and ve V. then
A" (v) is the set of nonloop edges with tail v and A (v) the set with head v If K is
any Abelian group (with additive notation), a K-flow in G is a function f: E - K such
that for every ve V,

Y{fleec A (v)}=% {f(e): ec A (v)}.

If fle)#0 for all e E, f is called a nowhere-zero K-flow. For k> 1, f is called a
nowhere-zero k-flow in G if [ is a nowhere-zero Z-flow in G such that —k < fle) < k
for all ec E. (Here Z denotes the set of all integers.)

It is easy to see that if G has a nowhere-zero k-flow (K-flow) under some
orientation of its edges, then it has one under every orientation, and thus the existence
of such a flow depends only on the underlying undirected multigraph.

Tutte [Tu] conjectured that every bridgeless multigraph has a nowhere-zero 5-flow.
Jaeger [J1], [J2] proved:

ProrosiTion 2.1 {Jaeger). Every bridgeless multigraph has a nowhere-zero 8-flow.

Seymour [Se] improved this result by showing:

ProposiTion 2.2 (Seymour). Every bridgeless multigraph has a nowhere-zero 6 -flow.

An Eulerian multigraph is a multigraph (not necessarily connected) in which every
vertex has an even degree. Equivalently, as is well known, an Eulerian multigraph is
an edge disjoint union of cycles. Thus the problem of covering a multigraph by a
family of cycles of minimum total size is equivalent to that of covering the multigraph
by a family of Eulerian subgraphs of minimum total size. The existence of nowhere-zero
flows in a multigraph is closely related to the minimum number of Eulerian subgraphs
that cover it. This is shown in the following known results.

ProrosiTioN 2.3 {Jaeger [J2]). Let G be a bridgeless multigraph. The following
conditions are equivalen: for every k = 2:

(1) There exists a nowhere-zero Z,-flow in G.

(i1} For every Abelien group K of order k there exists a nowhere-zero K-flow in G.

(i11) There exists a nowhere-zero k-flow in G.

ProrosiTion 2.4 (Mathews [Mal). Let G be a bridgeless multigraph. For every
k=1, G can be covered by k Eulerian subgraphs iff it has a nowhere-zero Z.»-flow.

In §¢ 4, 5, we combine Propositions 2.1-2.4 in order to obtain for every bridgeless
multigraph G a cover by Eulerian subgraphs. From this cover we obtain a cover of
small size of G using the method we develop in § 3.

Qur results showing the connection between nowhere-zero flows and short cycle
covers are summarized in Table 1.

3. Generating covers of small size from covers by Eulerian subgraphs. Our main
result in this section is the following:

ProrosiTion 3.1. Let G=(V,E) be a bridgeless multigraph, and let C =
(C,, Cs, .-+, C.) be a given cover of G by k Eulerian subgraphs. Then 1here exisis a
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TaBLE 1
If G=(V, E) has a then G has a cycle
nowhere-zero k-flow cover of length at
for k= most:
2 |E|
4 SIE]
s
6 3|E|
8 BE|

cover of G of size at mosi

(3.1) i

Such a cover can be found in O(2%|E|) time.

Proof. Identify each C, with the corresponding element of the cycle space of G,
i.e., with the characteristic function of C,, regarded as a function from E to GF(2).
For every binary vector u = (u, u,, - - -, u, ) define C{u) =EBT‘:1 u,C,. (Here &5 denotes
the sum over GF(2).) Obviously C(u) is an Eulerian subgraph of G. For every edge
feEletv(f)=(v, -, v) beabinary vector in which v, =1 iff f€ C. One can easily
check that for every vector u = (u,, - u), fe Clu) iff (v(f), u)=@f‘=] vy, = 1. This
implies the following:

-l Fact ). Foreveryedge f€ E, the number of vectors u such that f € C(u) is precisely
P

Let u'", u® -+ u™ be a basis of (GF(2))". If fe E then v(f)#0, and thus
(o(f),u'"y#0 (ie, fe Clu'")), for at least one index | =i =k Therefore:

Fact 2. For every basis u'", «'®, - -+ u™ of (GF2))*, C(u'"), -+, C(u'®) is a
cover of G by Eulerian subgraphs. '

Let B be the set of all bases of (GF{2))*, and put b = |B|. By Fact 2, every element
of B induces a cover of G. We now compute the sum of the sizes of these b covers.
By symmetry, every nonzero vector u € ( GF(2))" belongs to exactly b+ k/(2* — 1) bases.
Combining this with Fact 1, we conclude that every edge fe E is covered precisely
(b-k/(2*=1))-2*"" times by the collection of all the b covers associated with the
elements of B. Therefore the sum of sizes of these covers is b- k- 257" - |E|/(2" = 1),
and the average size is just the number s given in (3.1). Thus, there exists a cover of
G corresponding to an element of B of size at most s. This establishes the first pan
of Proposition 3.1. The time bound follows from the fact that

S Ak _ 9y < d e
et S .

Next we prove the following proposition, which is an improvement of [ILPR,
Cor. 1]. (There is a misprint in this corollary. |E|+s(| V[, 2| V| -2) should read |E|+
2{VI=24+s(| V], 2| V]|=-2).)

ProrosiTiON 3.2, Suppose that one can find in time O(e’) a cover of size
=d-eld > 1) for any bridgeless multigraph G with v vertices and e edges. Then we can
find a cover of size =min (de, e+ (2d —1){(v—1)) in time O(e+ 7).

In order to prove Proposition 3.2 we need the following result of [ILPR]:

LEmma 3.3. (i) Let T=(V, E;) be a spanning tree of a multigraph G=(V, E).
Then there exists an Eulerian subgraph C=(V, E,) of G with E.2 E —E;. C can be
found in O(|E|) time.
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(i1l Let T=(V, Ey) be a spanning tree of a bridgeless multigraph G. Then Ilwre
exists a bridgeless subgraph H=(V, E) of G such that E, = E; and |E,|=2|V|-
Such T, H can be found in O(|E|) time.

Proof of Propesition 3.2. Let G=(V, E) be a bridgeless multigraph. Put v = A%
and e=|E|. If dese+(2d~1)(v—1), then e=O(v) and there is nothing to show.
Otherwise we argue as follows. Clearly we may assume that G is connected: otherwise
apply the theorem 1o each of its connected components. Let T=(V, E,) be a spanning
DFS tree of G. By Lemma 3.3(ii) there exists a bridgeless subgraph H =(V, E,) of
G such that E, 2 E; and | F;;‘:..L ~2. Define G=(V, E) where E=E ~(E,, — E;).
Clearly T is a spanning tree of G. By Lemma 3.3(i), there exists an Eulerian subgraph
C=(V, E,)of G with E.oE-E,. By assumption there exists a cover of H of size at
most d{E|. This cover together with C forms a cover of G of size at most

d\Ey|+|Ec|= d|Ey|+|E|=d|Ey|+|E|~|Exul+]|Ef|
=et+(d-D|Ey|+v-1se+(d-1)2v=2)+v—l=e+(2d - 1)(v—1).

T, H and C can be found in O{e) time. The cover of H can be found in
O(|E,1?) = O(v?) time. Therefore, the total time bound is Ofe+ v°). This completes

mn

the proof of Proposition 3.2. g

4. Consequences of nowhere-zero 8-flow and nowhere-zero 4-flow. Combining Propo-
sition 2.1 with Propositions 2.3 and 2.4, one can easily deduce the following result of
Jaeger [J2]. His result appears also in [Ma]. The proof in [ILPR] supplies the algorithms
and the time bound.

Lemma4.1. Every bridgeless multigraph with e edges can be covered by three Eulerian
subgraphs. These subgraphs can be found in O(e’) time.

Combining this lemma with Proposition 3.1 {(with k =3) and Proposition 3.2, we
obtain the following weaker version of Theorem 5.1:

Every bridgeless multigraph G with v vertices and e edges has a cover of size at
most

min (Ye, e+Yp-Y

Such a cover can be found in O(e+v7) time.

The following result [Ma] (see also J2]) is equivalent to the four color theorem:

Every planar bridgeless multigraph can be covered by two Eulerian subgraphs.

Combining this with Proposition 3.1 with k=2 and Propesition 3.2, we obtain:

THeOREM 4.2, Every bridgeless planar multigraph with v vertices and e edges has
a cover of size at most

min (3e, e +3v—3%).

Similarly, Jaeger's result [J2] that every 4-edge-connected multigraph has a
nowhere-zero 4-flow implies:

TurEorEM 4.3. Every 4-edge-connected muliigraph with v vertices and e edges has
a cover of size at most

i 4 L 15 5
min (;e, e+ 30 —3).

Such a cover can be found in Qe+ v°) time.

5. A consequence of nowhere-zero 6-flow. In this section we prove our main result
THEOREM 5.1, Every bridgeless multigraph G with v vertices and e edges has a cover
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of size at most
min (5e, ¢ +5v—1).
Such a cover can be found in polynomial time.
Proof. By Proposition 3.2 it is enough to show that G has a cover of size =le.
Let G, =(V, E) be an orientation of G. By Propositions 2.2 and 2.3, G, has a nowhere-
zero Z, % Z;-flow f), i.e., for every ec E, fi(e)e{(1,0),(1,1),(1,2),(0,1),(0,2)}. For
any K-flow f and ge K define

E(f,g)={ec E: f(e)=g}.
Put
Ei=E(fi, (1L,ODUE(Sf, (1, DU E(f, (1,2)).
Clearly E, is an Eulerian subgraph of G. Let G, be an orientation of G in which E,
is a directed Eulerian circuit, and let f; be the Z, x Z;-flow obtained from f, by defining

file)=f(e) if the directions of e in G, and G. coincide, and fi(e) = —f,(e) otherwise.
Clearly there exists an 1, 0= i =2, such that

|E(fo (1, i Z 3| E)| =3 E(fa, (1, )| +|E(fa, (1, 1) +|E(f, (1, 2))]).

Let f; be the flow obtained from f. by letting fi(e)=fi(e) if e2 E, and fi(e)=
f2(e)—(0, i) if ee E,. Obviously

(5.1) [E(fs, (1,00 =|E(f, (1, )| =3 E]

Put E;= E(f, (1,0)), Es= E\ E;. The second coordinate of f; is a nowhere-zero Z;-flow
in E,. By Proposition 2.3 there exists a nowhere-zero 3-flow in E,, which is, of course,
also a 4-flow. By Proposition 2.3, E, has a Z;-flow, and by Proposition 2.4, E, can be
covered by two Eulerian subgraphs C, and C;. By Proposition 3.1 with k=2, E, has
a cover C of size at most 3| E,| =3(|E|~|E;|). In order to obtain a cover of G, we add
to C an Eulerian subgraph D of G that contains E,. There are four possibilities to
such a subgraph: E,, E,@ C,, E,@ C;and E, @ C.® C;. Let D be that of smallest size.
One can easily check that

'Ell'i'IEl@C:|+|E|@C3|+W51@C2@C;r=4|E:\|+2(|E‘_|Esl) =2(|E|+‘EJ“-
Therefore

|E|+|E,
,D[g'—z—

Since |[D|=|E||, (5.1) implies
|Es| 23| D].

C together with D is a cover of G of size at most

|D|+3|E|=3|E| = 5| D| - | Es| +3| D| = 3| Es| +3| E|
=3|D| 3| E:| +31E| =3l E| +3|Ei| - 3| Eu| +3] E] = 3| E|.
This establishes the existence of the desired cover.

We now briefly sketch an evaluation of the complexity of the construction. The
constructions which are explicitly described in the proof can clearly be executed in

Ofe”) time.
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However, the proof uses the following two existence theorems:

1. the existence of a nowhere-zero £, x Z, flow for every bridgeless multigraph;

2. the fact that one can obtain a (Z,)® nowhere-zero flow from a given Z;
nowhere-zero flow.

In [Yo] Younger shows that the needed Z,x Z, flow can be formed in Of{v- ¢)
time. Statement 2 can be settled by means of maximal matching algorithms, and thus
the time complexity certainly does not exceed O(e®). Thus the total time bound is at
most Ofe*), which can be reduced, by Proposition 3.2, to Ole+ v7). 0
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